Recommended Reading

Chosen an ebook by Victor Davidson

Chosen an ebook by Victor Davidson

What if much of what you thought you knew about history turned out to be wrong? What if the leaders of the world weren’t actually elected, but were selected by their superiors over the centuries to preside over world events for a purpose known to none but themselves? What if you were selected by them to become one of the Chosen? Victor E. Davidson, a successful young businessman, is firmly in control of his life. He presides over his own global company and lives an active lifestyle, keeps in touch with his lifelong friends… and tries to forget the chilling memory of his parents’ death when he was a child. Raised by his grandfather, himself an orphan, Vic wonders how to fill in the gaps of his family history. Then he is approached by the members of a secret organization, who initiate him into a history of the world – and his own family – that seems hard to believe but is impossible not to acknowledge. As Vic learns more about the unseen hands that turn the levers in the machinations of world power, he discovers more than even this powerful group had counted on, about himself and his destiny. But will it be enough? Chosen takes you into the depths of hidden history and its frightening corridors of power, from the point of view of one who has been initiated into its sacred secrets. Here is a novel that will change the way you think about the world and who runs it. In a narrative spanning the globe and accurately convincing in its details, you will find a history more convincing than anything you learned in school, told by one who was there…
Victor E. Davidson

How Sugars hide in our products

How to Steer Clear of Added Sugar

So you know to monitor foods that contain the words: sugar, sucrose, or fructose. But what about less common designators: dextran, Ethyl Maltol, or Panela?

Just because a label says no “refined sugar” doesn’t mean there’s not a type of sugar other than white sugar in the product. Often the suffixes “syrup” or “ose” designate a sugar. To help identify sugars in your foods check for the following ingredients:

  • Blackstrap molasses
  • Buttered syrup
  • Cane juice crystals
  • Evaporated cane juice
  • Caramel
  • Carob syrup
  • Fruit juice
  • Honey
  • Fruit juice concentrate
  • Brown rice syrup
  • Corn syrup solids
  • Florida crystals
  • Golden syrup
  • Maple syrup
  • Molasses
  • Refiner’s syrup
  • Sorghum syrup
  • Sucanat
  • Treacle
  • Turbinado
  • Barley malt
  • Corn syrup
  • Dextrin
  • Dextrose
  • Diastatic malt
  • Ethyl maltol
  • Glucose
  • Glucose solids
  • Lactose
  • Malt syrup
  • Maltose
  • D-ribose
  • Rice syrup
  • Galactose
  • Maltodextrin
  • Castor

Scaler Wave Cold Lasers

Hi everybody, just want to share with you information about cold laser technology.  This type of laser is FDA approved for pain, arthritis, circulation, injury, anti-aging and much more.  Anyone can use it unlike the others that “cut and burn” and have to be used by medical doctors that are trained.

I am now starting to use the Scaler wave cold laser in my practice and combined with the quantum biofeedback I’m getting twice the results and much faster.  I’m so excited about this device and want to share more with you.

The Scaler wave, which is the non linear energy of the universe, has been woven into this device and assists the body into unwinding and going into Stillpoint or a state from Polarity to Neutrality.  When the body is free of stress or neutral then it can better heal itself.  The body has all that it needs to heal and return to balance given the opportunity.

When we are in stress we are in a state of polarity where the adrenals are pumping adrenaline and cortisol through the body.  These are sometimes called the “death hormones” and wreak havoc in the body.  Stress shuts down the thymus, thyroid, lympth, spleen, hormones and many other systems.

As we bring the body back into Stillpoint or neutrality, as the yogies and mystics call it, then the body can release the neutrochemicals it needs to heal what is out of balance.

The laser also adds photons, coherent light waves via the red, infra red and ultra violet LED’s to the cells.  These photons activate the mitrochondria in the cells which produce ATP (adenosine triphosphate) which is the energy that is produced in the cells.  This extra energy helps to rebuild and regenerate the body and knows exactly what it needs to do to help heal any imbalances.

I was introduced to this technology thirteen years ago at a conference.  At that time I had excrutiating back pain and could no longer sit and listen to the lectures.  I was invited to lay on a massage table and experience an unwind session with the Scaler Wave laser.  After twenty minutes, I got up and was totally free of pain which did not come back.  I knew one day I would own one as I truly believe that everyone should have a laser in their home.  We can throw out everything else in the medicine cabinet.  I would invite everyone to check out the website: www.ilovemylaser.com and watch the video.

You will meet Paul and Lillie, his beautiful wife  who invented this laser which in my opinion surpasses all other cold lasers on the market.   The testimonials speak for themselves so check those out too.

Because I am a Quantum healer and doctor of alternative medicine I understand the importance of moving from linear thinking and the materialistic view point.  We are not machines as the medical profession would have us believe but we are subjective, feeling, energetic beings that have an innate intelligence to thrive, be healthy, happy, creative and joyous.

Whatever we can do to reconnect to our source, that quantum field of consciousness where infinite possibilities exist, is our birthright and our passage from moving from this state of polarity and separation (of which this planet has been in for so many years)  to a place of opening our hearts (heart chakra, thymus).  As we move into this state of  neutrality, our heart chakra opens, a flowering happens, where our thymus (seat of our immunity) is activated and we are correlating all the systems of the body.

The Physical, Vital, Mental/Emotional, Supramental (intuition) and Spiritual bodies, all come into alignment.  The Scale Wave laser and Indigo (quantum biofeedback device) can help us drop into this quantum field where healing can happen and where we can feel and understand at an experiential level that state of neutrality, of feeling connected.  The body is an amazing thing and it knows how to find solutions to problems or imbalances/stress…we just need to nurture it, give it the right information and it will heal.

We have been led to believe that there is something wrong with our bodies, that we need to give it drugs and perform surgery and other invasive procedures but this is false information we have been brainwashed to believe.  We are part of nature and each part of us reflects the complexity of the Universe from the microcosm to the macrocosm.  From each atom with the electrons moving around it,  to the solar system, to the galaxies.  We are scaler in nature, non linear and self regulating.

We have an opportunity now to move into a positon of empowerment within ourselves to create positive health, not just disease prevention.  We can take charge of our lives, be our own doctors, stop feeding the pharmaceutical companies and AMA, which is now becoming the number one reason for deaths in the United States.   Each one of us can join with others in co-operation as we realize we are part of the whole and that what we do, think and say has an effect on everything else.  We can now use our consciousness in more positive ways to open our hearts and flower into a new paradigm of creating positive health, cooperation in community projects that support life and the environment and support grass root projects of self sustaining agriculture, organic farming and a money system that is not dependant on the big banking system that is robbing so many of us of our life savings.

There has been an excellent movie produced recently called “THRIVE’, I would invite everyone to view this movie as it gives an excellent review of what is going on in the world and how we can together make a change as we go into this new cycle of change.  I think it imperative that we do this, take action for the survival and freedom of us all.

 

 

 

 

Chi Food

February 14, 2013

by Roland Thomas, PhD, NMD httfp://wwwquantumleapwellness.com/bionews1112.html

Access date: 5/18/2013 Heading Articles

There are different forms of Chi in traditional Chinese medicine.

Each of these different forms of Chi can move around the body to help the transformation of the other forms of Chi. Each of these forms of Chi is equally important. Here I want to share with you specifically a food; BioSuperfood, and why I recommend it as a formidable form of Food Chi.

Foods can provide Chi when it is of good quality

Or food can steal your Chi when it is the wrong food, or when you eat too much of it. Food is a matter of energy. We live off the energy that we derive from foods, and not from the food. In the realm of foods, it is important to remember that the first foods are breath, light and water. One can live months with just these foods, but one will die in minutes without the breath. The breath contains infinitely small particles that make up most of the sub-atomic nutrients that are required for basic cellular survival.

Food Chi or Gu Chi is the first stage in the transformation of food into Chi.

Food is “disassemble” by stomach juices and digestive enzymes, then sent to the liver and spleen to make Chi. This digestive process takes place in the Triple Heater also known as the “Three Spaces”. The stomach and spleen are in the middle space or heater. The Food Chi is sent from the middle heater to the upper heater. Here, in the lungs, it combines with air to form Zong Chi, and then to the heart where it is transformed into blood.

After breath, sunlight, the most efficient foods are the smallest foods; grapes, figs, berries, nuts, and the likes.

Energy wise, those foods with most nutrients and least bulk are the most efficient. But the best food on earth in terms of energy potential are some species of micro algae invisible to the naked eye, that in quantity make up a green powder. They are the smallest foods on earth, yet some are the densest, containing thousands of nutrients required for energy.

BioSuperfood is a blend of four of the most compatible micro algae 30 years of research in the making.

But when the flow of Chi is blocked due to health problems, tension, or injury, the flow stagnates and in extreme cases solid lumps or tumours can appear. When Chi condenses, it can take a physical form.

There is also a parallel in modern physics of how Chi is in a constant state of flux between the physical state and the energetic or immaterial state. Although matter appears to be solid on the scale we see it, if we were to look closely at the atoms and particles that make up matter they are made of pure energy. If water molecules are vibrating slowly then they form ice (solid), and as they warm up and vibrate more quickly they can change into water (liquid) and then finally into steam (gas). It is similar with Chi – although it can have different forms it is still essentially the same Chi. explanation).

Although the descriptions of the different kinds of Chi can help explain the theory, the practice of experiencing the flow of Chi is much more important. Qi Gong and Tai Chi helps the body to relax and become free of tension, and stretches the muscles, ligaments and internal organs of the body. This encourages Chi to flow, and most people can start to feel this for themselves after a month or two of doing Qi Gong and Tai Chi. Over time Qi Gong and Tai Chi also helps to build a reserve of energy with which the body can heal itself of past injuries and health problems, and which can improve people’s overall health.

Vitamin D extends life by protecting your telomeres

May 15, 2013 by Blanche Levine Filed under Nutrition News

Leave a comment

Wed. May 15, 2013 by Blanche Levine

NaturalHealth365) What does vitamin D have to do with a longer, healthier life? It looks like this essential hormone (not really a vitamin) plays a key role in telomere integrity. But, why should any person care about their telomeres?

Startling scientific revelations reveal that shorter telomeres can trigger inflammation and, may be, the real reason for the growing epidemic of cancer; diabetes; heart problems and Alzheimer’s disease.

In truth – every function, in the human body, is dictated by the length of our telomeres. Telomeres are the clocks that define your age, not the chorological age but how old your cells become. Genes may be capable of changing the way they express themselves, but you still have the basic gene you were born with, while telomeres don’t stay the same over time.

It’s true – telomeres can have an affect on genes and how they express themselves. A new groundbreaking study, out of the University of California at San Francisco, shows that telomere length determines your risk and severity of all diseases by their effect on genes.

Vitamin D actually preserves the length of our telomeres

The American Journal of Clinical Nutrition published a study which looked at more than 2,000 women of all ages and found the more vitamin D they had, the longer their telomeres were. Also, the people who supplemented with vitamin D had longer telomeres then those who didn’t.

It seems, from the emerging studies, that healthy vitamin D levels will protect our lives. Vitamin D is widely available in the form of sunshine and vitamin D3 supplements can be obtained from many reputable sources like, Dr. Cannell’s Advanced D – sold at PurityProducts.com.

It’s so sad to think how many people suffer (and needlessly die) from diseases caused by a deficiency in vitamin D.

Simply put, if your telomeres are too short – you are destined to experience a shorter life, filled with dis-ease. Telomeres allow cells to divide without losing genes. In addition, this cell division is behind the growth of every new skin or blood cells.

Without telomeres, chromosome ends would fuse together and degrade the cell’s genetic blueprint, which would make cells malfunction and either become cancerous or die. The ends of the chromosomes would look and act like broken DNA.

When the telomere gets too short, the cell may cease to be, so to avoid this scenario – cells becomes cancerous and then escapes the fate of an early demise. While telomere length may not always be the only predictor of lifespan, it is crucial in the development of many life-changing, chronic health conditions and longevity.

The Raw Transformation

Raw-Transformation-Energizing-Your-Life-With-Living-Foods-by-Wendy-Rudell

Raw Transformation Energizing Your Life With Living Foods by Wendy Rudell

This visually lively gourmet raw food recipe book provides all the information you need for increasing your health and well-being through a raw foods diet. The recipes will motivate anyone who wants to have more energy, vitality, and abundant health without feeling deprived of their former cuisine. In addition, the book introduces readers to the ways that we can transform our physical bodies and our consciousness through a combination of living foods, yoga, meditation, breath work, and much more.  The first third of the book introduces raw cuisine, giving information on nutrition and the benefits of adopting this lifestyle. It connects raw food to other modalities, to enable the whole process of physical, emotional, and spiritual transformation.  The next two thirds of the book features over 300 raw food recipes that are surprisingly diverse and easy to make. These recipes include entrees such as Indian Vegetable Curry and Pad Thai, desserts such as Banana Coconut Cream Pie, and a wide variety of salads, breads, crackers, side dishes, shakes, smoothies, soups, dressings, marinades, dips, and much more. Unlike many natural foods recipe books, this one uses only familiar, easy-to-find ingredients.  The book ends with a list of sources for blenders, juicers, kitchen gadgets, organic and specialty foods, as well as health retreat centers. It also includes a glossary and recommended reading list.

Wendy’s book at Amazon

El Parralito

Hidden at the base of the Sierra De Laguna Mountains in Baja California South is our beautiful 200 year-old ranch on 1000 acres of wilderness desert. The original grapevine, for which Rancho El Parralito was named, still produces a bountiful harvest, along with our gardens and orchards. Thanks to our … Continue reading

Grains, nuts and seeds

February 8, 2012
 
Grains, Nuts and Seeds-Yvonne L. Salcido MHGrowing up on the American diet most of us aren’t aware of the best way to prepare grains, nuts and seeds so our bodies can utilize the nutrients. We grew up thinking white flour bread was beautiful and delicious, nothing could be better, especially home baked bread. Today many have evolved to think whole wheat bread is the best option and who can deny that hot, homemade, whole wheat bread, fresh out of the oven tastes great? But this reminds me how Dr. Christopher taught that you can’t expect to grind wheat to face powder, cook it at high temperatures and think it will rebuild and nourish the body. “Dead food begets death.” Live foods give life! Proper preparation will nourish and rebuild our bodies.

Whole grains that have been processed at high temperatures are extremely toxic. Are there any puffed grains or flat flakes in your whole grain breakfast cereal? These are not only void of nutrients but hard to digest. These highly processed whole grains also affect the blood sugar and destroy the enzyme phytase that aids in the breaking down of phytic acid.
Nature has placed phytic acid in the bran of whole grains and also enzyme inhibitors to protect grains for long time storage. If the grains are not pre-soaked or fermented before consumption the phytic acid combines with other minerals such as calcium, magnesium, iron, copper, and zinc and inhibits their assimilation in the body, which can lead to mineral deficiencies and eventual bone loss.
Sprouting, overnight soaking and fermenting the grains helps to neutralize nature’s protection of phytic acid and enzyme inhibitors. This in essence starts the digestive process giving us the ability to properly break down the grains, nuts, and seeds making it possible for our bodies to receive the minerals and nutrition within them. Soaking seeds in warm water also promotes growth of the beneficial enzymes which increase vitamin and mineral content, favorably B vitamins.
Gluten is a protein in grains that is hard to digest. It taxes the digestive system. Those grains containing gluten; barley, oats, rye, and wheat should especially be sprouted, soaked, or fermented. Currently numerous people have allergies to grains, nuts, and seeds but with the proper preparation of these foods many have tolerated them just fine.
Throughout history previous cultures sprouted, soaked, and fermented grains, nuts and seeds. An example of this is in the Old Testament when “pulse” was eaten by Daniel, Hananiah, Mishael, and Azariah. This gave them amazing health benefits.
Some cultural examples of historic grain preparation include: Mexican pozol (corn cakes) which are fermented for a few days and can be for up to two weeks using banana leaves. When making injera (bread) Ethiopians fermented teff (grain) for several days. Oriental and Latin American countries fermented rice before using. In India idili (rice and lentils) fermented for two days or longer. African corn was soaked overnight before adding it to dishes. They also used millet or corn to make a sour porridge. In Europe, grains were soaked overnight or longer before serving as cereal or porridge and their bread was made from sourdough starters. American pioneers also made sourdough breads and the Welsh soured a porridge made from oats.
There are many books available on sprouting for the different grains, nuts and seeds. It is best to soak grains and the larger nuts and seeds for at least 24 hours or more. To ferment them use lemon juice or a good apple cider vinegar from the health food store that contains the friendly flora or “mother”. A little in the soaking water will suffice. (see recipe below)
I have witnessed in my own health and others how these simple changes in our food preparation will improve your health. Increased energy and vitality will be yours!
 
Yvonne Lunt Salcido is a Student Advisor for and a Master Herbalist Graduate of the School of Natural Healing. She is a current student at Utah Valley University majoring in Health and Wellness Education.
 

What’s that on your apple?

Fancy yourself a vegetarian or vegan?

Think that the label that says “organically grown” has anything to do with the packaging, storage, and transport of that product to stores?

What if I told you that cow, pig, and chicken collagen is now used in place of wax on your fruits and vegetables, among many other things much worse than you can probably imagine?

And what if then I told you, as with most atrocities that happen now-a-days, that this is all approved by the FDA…

Since the early 12th century, there has been a tradition of applying wax onto the skins of fruits and vegetables for longer storage life. Today, that tradition is being carried on with a whole new generation of chemicals and compounds that are genetically designed to accomplish the same goal. But in these modern times, the health and well-being of the consumer of that apple is not necessarily the goal of this unnatural, inorganic process.

Bottom line… your produce is being dipped and sprayed with an experimental host of holy horrors in the name of “food safety” and longer shelf-life. Prepare yourself to be shocked and amazed that our Federal agency that is designed to protect us, the Food and Drug Administration, is allowing these dangerous and unhealthy practices to be perpetrated on an unwitting public, all in the name of profits.

This video was recently posted to Youtube, showing a woman peeling off of her freshly bought supermarket romaine lettuce what appears to be a plastic coating, similar to the type one would peal off of the screen of a new electronic gadget. She has no idea what she has discovered…

Now, while this seems to be an almost incredible and hard to believe hoax, the truth is even stranger. Please read on…

For those of you that know of my writing, you know that I like to get right down to the nitty-gritty… the primary source. And so we will go right to what the FDA has to say about what this strange plastic-like substance is, and whether or not it approves of such food handling practices (which it does).

Here is the link for the FDA’s website, entitled:

“Chapter VI. Microbiological Safety of Controlled and Modified Atmosphere Packaging of Fresh and Fresh-Cut Produce – Analysis and Evaluation of Preventive Control Measures for the Control and Reduction/Elimination of Microbial Hazards on Fresh and Fresh-Cut Produce”.

Link: http://www.fda.gov/Food/ScienceResearch/ResearchAreas/SafePracticesforFoodProcesses/ucm091368.htm

Wow! That sounds so wonderfully official and scientific, doesn’t it?

So what are these “preventative control measures” as referred to in this report?

Well, for our purposes, since these measures are actually edible, let’s explore what the FDA approves for our fruits and vegetables to be dipped in and sprayed with for our own “safety”…

The report states:

This chapter addresses the use of modified atmosphere packaging and controlled atmosphere packaging for the preservation of fresh produce. There have been great technological advances in this area of preservation, particularly as it refers to improving the quality and shelf-stability of highly perishable food products, such as produce. However, when using these technologies, careful attention must be paid to the effect on the survival and growth of pathogenic organisms. This chapter focuses on food safety aspects of packaging technologies that are either commercially available or under investigation…

Over the past 20 years, there has been an enormous increase in the demand for fresh fruit and vegetable products that has required the industry to develop new and improved methods for maintaining food quality and extending shelf life…

One of the areas of research that has shown promise, and had success, is that of modified atmosphere packaging (MAP). This technique involves either actively or passively controlling or modifying the atmosphere surrounding the product within a package made of various types and/or combinations of films. In North America, one of the first applications of this technology for fresh-cut produce was introduced by McDonald’s (Brody 1995), which used MAP of lettuce in bulk-sized packages to distribute the product to retail outlets…

A modified atmosphere can be defined as one that is created by altering the normal composition of air (78% nitrogen, 21% oxygen, 0.03% carbon dioxide and traces of noble gases) to provide an optimum atmosphere for increasing the storage length and quality of food/produce (Moleyar and Narasimham 1994; Phillips 1996). This can be achieved by using controlled atmosphere storage (CAS) and/or active or passive modified atmosphere packaging (MAP).

The numerous film types used in MAP are listed in Table VI-2 (see below), and some commercially available MAP systems are listed in Table VI-3. Oxygen, CO2, and N2, are most often used in MAP/CAS (Parry 1993; Phillips 1996). Other gases such as nitrous and nitric oxides, sulphur dioxide, ethylene, chlorine (Phillips 1996), as well as ozone and propylene oxide (Parry 1993) have been suggested and investigated experimentally.

So was that plastic looking film being peeled off of that supermarket lettuce above actually one of many forms of modified atmosphere packaging? Was it dipped in or sprayed by a “MAP” chemical compound for “food safety”?

Lets read further into this FDA report…

1.3. Films used in MAP

Edible biodegradable coatings are yet another variant of the smart film technology, where a film is used as a coating and applied directly on the food…

The use of MAP for whole and fresh-cut produce involves careful selection of the film and package type for each specific product and package size . Effective MAP of produce requires consideration of the optimal gas concentration, product respiration rate, gas diffusion through the film, as well as the optimal storage temperature in order to achieve the most benefit for the product and consumer. In addition, when selecting an appropriate film, one has to take into account the protection provided, as well as the strength, sealability and clarity, machineability, ability to label, and the gas gradient formed by the closed film (Zagory 1995).

Recently, the long list of films and commercially available MAP systems has been augmented with the conception of both smart and edible packaging systems (Guilbert and others 1996; Phillips 1996). “Smart” or “intelligent” packaging is being used in the fresh-cut industry and includes indicators of time and temperature, gas composition, seal leakage, and food safety and quality (Rooney 2000). Some intelligent systems alter package oxygen and /or carbon dioxide permeability by sensing and responding to changes in temperature. Other smart films incorporate chemicals into packets placed in the packaging system, with no contact with the product; an example would be the use of O2 scavengers with O2 indicators. Another type of smart film, developed with food safety in mind, is currently undergoing testing. This novel system, when incorporated into a packaging film, uses an antibody detection system to detect pathogens, and expresses a positive finding as a symbol on the surface of the package, thereby alerting food handlers to the presence of pathogens. Although this technology shows promise, it is still in its infancy and comprehensive assessments have yet to be performed. Several limitations have been suggested with this technology; for example, it would not likely be able to detect pathogens at concentrations below 104 CFU/g or cm2 and would not detect pathogens within the product.

Edible biodegradable coatings are yet another variant of the smart film technology, where a film is used as a coating and applied directly on the food (Guilbert and others 1996; Francis and others 1999). Wax has been used in China since the 12th and 13th centuries as an edible coating to retard desiccation of citrus fruits, and in the last 30 years, edible films and coatings made from a variety of compounds have been reported. Guilbert and others (1996) and Baldwin (1994) have extensively reviewed some of the newer edible films (see Tables VI-3 and VI-5). These films are gaining popularity due to both environmental pollution and food safety concerns (Padgett and others 1998). However, a number of problems have also been associated with edible coatings. For example, modification of the internal gas composition of the product due to high CO2 and low O2 can cause problems such as anaerobic fermentation of apples and bananas, rapid weight loss of tomatoes, elevated levels of core flush for apples, rapid decay in cucumbers, and so on (Park and others 1994).

Edible films may consist of four basic materials: lipids, resins, polysaccharides and proteins (Baldwin and others 1995). Plasticizers such as glycerol as well as cross-linking agents, antimicrobials, antioxidants, and texture agents can be added to customize the film for a specific use (Guilbert and others 1996). Plasticizers have the specific effect of increasing water vapor permeability. Therefore, their addition must be considered when calculating the desired water vapor properties of each specific film, since too much moisture can create ideal growth conditions for some foodborne pathogens. The most common plasticizer used to cast edible films is food-grade polyethylene glycol, which is used to reduce film brittleness (Koelsch 1994).

What is polyethylene glycol?

Link – http://en.wikipedia.org/wiki/Polyethylene_glycol – which causes nephrotoxicity (renal problems)

Link – http://en.wikipedia.org/wiki/Nephrotoxicity

What is a plasticizer?

Plasticizers (UK = plasticisers) or dispersants are additives that increase the plasticity or fluidity of a material. The dominant applications are for plastics, especially polyvinyl chloride (PVC). The properties other materials are also improved when blended plasticizers including concrete, clays, and related products. The worldwide market for plasticizers in 2000 was estimated to be several million tons per year.

Plasticizers work by embedding themselves between the chains of polymers, spacing them apart (increasing the “free volume”), and thus significantly lowering the glass transition temperature for the plastic and making it softer. For plastics such as PVC, the more plasticizer added, the lower its cold flex temperature will be. This means that it will be more flexible and its durability will increase as a result of it. Some plasticizers evaporate and tend to concentrate in an enclosed space; the “new car smell” is caused mostly by plasticizers evaporating from the car interior.

Plasticizers make it possible to achieve improved compound processing characteristics, while also providing flexibility in the end-use product… Plasticizers also function as softeners, extenders, and lubricants, and play a significant role in rubber manufacturing.

Other uses include:

  • Phthalate-based plasticizers are used in situations where good resistance to water and oils is required. Some common phthalate plasticizers are:
    • Bis(2-ethylhexyl) phthalate (DEHP), used in construction materials and medical devices
    • Diisononyl phthalate (DINP), found in garden hoses, shoes, toys, and building materials
    • Bis(n-butyl)phthalate (DnBP, DBP), used for cellulose plastics, food wraps, adhesives, perfumes, and cosmetics – about a third of nail polishes, glosses, enamels, and hardeners contain it, together with some shampoos, sunscreens, skin emollients, and insect repellents
    • Butyl benzyl phthalate (BBzP) is found in vinyl tiles, traffic cones, food conveyor belts, artificial leather, and plastic foams
    • Diisodecyl phthalate (DIDP), used for insulation of wires and cables, car undercoating, shoes, carpets, pool liners
    • Di-n-octyl phthalate (DOP or DnOP), used in flooring materials, carpets, notebook covers, and high explosives, such as Semtex (plastic explosive). Together with DEHP it was the most common plasticizers, but now is suspected of causing cancer
    • Diisooctyl phthalate (DIOP), all-purpose plasticizer for polyvinyl chloride, polyvinyl acetate, rubbers, cellulose plastics, and polyurethane.
    • Diethyl phthalate (DEP)
    • Diisobutyl phthalate (DIBP)
    • Di-n-hexyl phthalate, used in flooring materials, tool handles, and automobile parts
    • and on and on…

Continued…

Lipids, or waxes and oils, and resins such as shellac and wood rosin have been widely used for intact fruits and vegetables in two distinct forms, laminates and emulsions (Baldwin and others 1995). Lipid-based edible barriers are known for their low water vapor permeabilities. Koelsch (1994) found that the water vapor permeability of a cellulose-based emulsion barrier is dependent on the lipid moiety used; a minimum permeability can be achieved when stearic acid is used as the lipid. This is due to the effective barrier formed by stearic acid through an interlocking network. However, lipid-based edible films also require a support matrix to reduce brittleness, and have difficulty adhering to the hydrophilic cut surfaces of fruits and vegetables (Koelsch 1994; Baldwin and others 1995). Some of the most common compounds used for support matrices are modified celluloses of hydroxypropylmethyl, ethyl and methylcellulose, chitosan and whey protein isolate (WPI; Koelsch 1994).

*** Authors note: Steric acid is also known as tallow (animal and plant fatty acids used in the production of soap).

In general, polysaccharides such as cellulose, pectin, starch, carrageenan, and chitosan, can adhere to cut surfaces of produce and effectively allow gas transfer; however, they are not effective moisture barriers. Due to their CO2 and O2 permeabilities, polysaccharide-based films allow the creation of desirable modified atmospheres, an attractive advantage over plastic or shrink wrap MAP which can be labor intensive, expensive and environmentally harmful (Baldwin and others 1995). A number of cellulose derived coatings are available commercially, most taking advantage of the modified atmosphere effect of the barriers. Pro-long (Courtaulds Group, London) and Semperfresh (Surface Systems International, Ltd., Oxfordshire, U.K.) are examples of water-soluble composite coatings comprised of the sodium salt of carboxymethyl cellulose (CMC) and sucrose fatty acid ester emulsifiers (Baldwin and others 1995). Their properties are discussed in Table VI-6. A newer product called “Snow-White,” based on sucrose esters of fatty acids, has also been used to combat oxidative browning in the potato industry. Nature-Seal is a polysaccharide-based surface treatment that uses cellulose derivatives as film formers, but unlike Semperfresh and Pro-long, does not contain sucrose fatty acid esters. Nature-Seal is a browning inhibitor that is applied as a dip or spray and has been shown to delay ripening of whole fruits and vegetables, and to retard discoloration of peeled carrots and cut mushrooms.

*** Authors note: Sucrose is the organic compound commonly known as table sugar and sometimes called saccharose. This is the kind of processed sugar many health conscious people avoid, and which diabetics aren’t supposed to consume, though the natural sugars in fresh fruit is acceptable for diabetics. This is a blatantly deceiving practice.

Finally, proteins such as casein, soy, and zein, can also adhere to hydrophilic cut produce surfaces and are easily modified to form films; however, they also allow water diffusion (Baldwin and others 1995). Unlike lipid-based barriers, protein-based barriers do not require the addition of a support matrix, since the protein acts as both the water vapor barrier and structural component of the film (Koelsch 1994). Park and others (1994) reported the successful application of a corn-zein film to extend the shelf life of tomatoes. Color change, loss of firmness, and weight loss during storage were delayed, and shelf life was extended by 6 d in comparison to untreated tomatoes. The corn-zein product used in the above study was a commercial product that was brushed onto the tomatoes (Regular Grade F4000, INC Biomedicals, Inc.), and consisted of 54 g of corn-zein, 14 g of glycerine, and 1 g of citric acid dissolved in 260 g of ethanol. Park and others (1994) did not comment on the use of citric acid in the film solution; however, others have found that edible films composed of zein were more successful in preventing the rancidity of nuts when citric acid was added (Guilbert and others 1996).

*** Author’s note: Ethanol, also called ethyl alcoholpure alcoholgrain alcohol, or drinking alcohol, is a volitile, flammable, colorless liquid. It is a psychoactive drug and one of the oldest recreational drugs. Best known as the type of alcohol found in alcoholic beverages, it is also used in thermometers, as a solvent, and as a fuel. In common usage, it is often referred to simply as alcohol or spirits.

In order to obtain an edible film that incorporates all the best qualities of these four basic materials, as well as fulfilling the specific conditions for each fruit or vegetable, manufacturers are now producing films comprised of different combinations. Some of the advantages and disadvantages of the four basic edible film barriers, as well as combinations thereof, are listed in Table VI-5 (discussed below).

Here is Table VI-3:

“Commercially available modified atmosphere packaging systems for small and large quantities of produce”

Edible Films1
TAL Pro-Long (Courtaulds Group) Blend of sucrose esters of fatty acids and sodium carboxymethylcellulose; depresses internal O2 and is edible. Pears
Nutri-Save N, O-carboxymethychitosan edible film. Pears, apples
Semperfresh, Nu-Coat Fo, Ban-seel, Brilloshine, Snow-White and White Wash products (Surface Systems Intl. Ltd.) Sucrose ester based fruit coatings with sodium carboxymethyl cellulose products manufactured exclusively from food ingredients available in dip or spray. Most fruits and vegetables, processed and whole potatoes (Snow-White and White-Wash)
PacRite products (American Machinery Corp.) Variety of products, water-based carnauba-shellac emulsions, shellac and resin water emulsions, water-based mineral oil fatty acid emulsions, and so forth. Apples, citrus, tomatoes, cucumbers, green peppers, squash, peaches, plums, nectarines
Fresh-Cote product line (Agri-Tech Inc.) Variety of products including; shellac-based, carnauba-based and oil emulsion edible films. Apples, pears, eggplant, tomatoes, cucumbers, stone fruits
Vector 7, Apl-Brite 300C, Citrus-Brite 300C (Solutec Corp.) Vector 7 is a shellac-based film with morpholine; the Apl-Brite and Citrus-Brite are carnuba-based films. Apples and citrus fruits
Primafresh Wax (S.C. Johnson) Carnauba-based wax emulsion. Apples, citrus and other firm-surfaced fruit
Shield-Brite products (Pace Intl. Shield-Brite) Shellac, carnauba, natural wax and vegetable oil/wax and xanthan gum products. Citrus, pears, stone fruit
Sta-Fresh Products (Food Machinery Corp.) Natural, synthetic, and modified natural resin products and combinations thereof. Citrus, apples, stone fruits, pomegranates, tomatoes, pineapple, cantaloupes, and sweet potatoes
Fresh Wax products (Fresh Mark Corp.) Shellac and wood resin, oxidized polyethylene wax, white oil/paraffin wax products. Citrus, cantaloupes, pineapples, apples, sweet potatoes, cucumbers, tomatoes and other vegetables
Brogdex Co. products Carnauba wax emulsions with or without fungicides, emulsion wax, high shine wax, water-based emulsion wax, carnauba-based emulsion, vegetable oil, resin-based and concentrated polyethylene emulsion wax products. Apples, melons, bananas, avocado, chayote, papaya, mango, pineapple, citrus, stone fruits.
FreshSealTM (Planet Polymer Technologies Inc. has licensed CPG Technologies of Agway, Inc. to produce) A patented coating that slows the ripening process by controlling the O2 and CO2 and water vapor flowing in and out of the product. It can be tailored to the individual respiration rates of different fruit and vegetable varieties. Currently available for avocado, cantaloupe, mangoes and papaya. Use on limes, pineapples and bananas is currently under investigation.
Nature-SealTM , AgriCoat (Mantrose Bradshaw Zinsser Group) Composite polysaccharide-based coating using cellulose derivatives as film formers. Sliced apples, carrots, peppers, onions, lettuce, pears, avocados, sliced bananas
Intelligent Systems
Activated Earth Films Typically polyethylene bags with powdered clay material made of powdered aluminum silicates, incorporated into the film matrix. Possibly reduces ethylene concentration by facilitating its diffusion out of the bag. Variable
Temperature Responsive Films (Landec Labs) Films increase their gas permeabilities in response to temperature increases as well as increases in respiration. Stabilizes the modified atmosphere so it remains the same under various temperatures. Specific for each product
CO2 Scavengers FreshLock (Mitsubishi Gas Chemical Co.), Verifrais (Codimer Tournessi, Gujan-Mestras) Sachet type product which is placed directly in the package and absorbs both carbon dioxide and oxygen. Fruits and vegetables, coffee
Ethylene absorbents Ethysorb (StayFresh Ltd), Ageless C (Mitsubishi Gas Chemical Company), Freshkeep (Kurarey), Acepack (nippon Greener), Peakfresh (Klerk Plastic Industrie, Chantler Packaging Inc.) Sachet type product which is placed directly in the package and absorbs ethylene. They are composed of a variety of products such as aluminum oxide, potassium permanganate, activated carbon, and silicon dioxide. Fruits and vegetables
Antimicrobial Films-unsure of commercial availability

-=-

So let’s take a look at what some of these “food safety” MAP products actually are, as listed in the above table:

-=-

Shellac is a resin secreted by the female lac bug, on trees in the forests of India and Thailand. It is processed and sold as dry flakes which are dissolved in ethyl alcohol to make liquid shellac, which is used as a brush-on colorant, food glaze and wood finish. Shellac functions as a tough natural primer, sanding sealant, tannin-blocker, odour-blocker, stain, and high-gloss varnish. Shellac was once used in electrical applications as it possesses good insulation qualities and it seals out moisture. Phonograph (gramaphone) records were also made of it during the pre-1950s, 78-rpm recording era.

Shellac is one of the few historically appropriate finishes (including casein paint, spar varnishes, boiled linseed oil and lacquer) for early 20th-century hardwood floors, and wooden wall and ceiling paneling.

From the time it replaced oil and wax finishes in the 19th century, shellac was one of the dominant wood finishes in the western world until it was replaced by nitrocellulose lacquer in the 1920s and 1930s.

(Source: http://en.wikipedia.org/wiki/Shellac)

-=-

Morpholine is a common additive, in parts per million concentrations, for pH adjustment in both fossil fuel and nuclear power plant steam systems. Morpholine is used because its volatility is about the same as water, so once it is added to the water, its concentration becomes distributed rather evenly in both the water and steam phases. Its pH adjusting qualities then become distributed throughout the steam plant to provide corrosion protection. Morpholine is often used in conjunction with low concentrations of hydrazine or ammonia to provide a comprehensive all-volatile treatment chemistry for corrosion protection for the steam systems of such plants. Morpholine decomposes reasonably slowly in the absence of oxygen at the high temperatures and pressures in these steam systems.

The European Union has forbidden the use of Morpholine in fruit coating.

Morpholine is widely used in the USA, Canada, Australia and other parts of the world as a food additive for use as a component or coating for fruits and vegetables. However, the use of Morpholine is prohibited in the European Union, those countries where its use is permitted are fully aware of these restrictions. Consequently, they have strict protocols to ensure waxes containing Morpholine are not used for fruit destined for the UK and the EU.

Morpholine is not permitted in Europe because it is known to be a precursor of N-nitrosomorpholine, a carcinogen.

(Source: http://www.salltd.co.uk/news_item.jsp?file=2010-09-29%20Morpholine%20residues%20detected%20in%20apples%20from%20Chile.html)

(Source: http://en.wikipedia.org/wiki/Morpholine)

-=-

Carboxymethyl cellulose (CMC) or cellulose gum is a synthesized cellulose derivative.

CMC is used in “food science” as a viscosity modifier or thickener, and to stabilize emulsions in various products including ice cream. As a food additive, it has E number E466. It is also a constituent of many non-food products, such as K-Y Jelly, toothpaste, laxatives, diet pills, water-based paints, detergents, textile sizing and various paper products. It is used primarily because it has high viscosity, is non-toxic, and is hypoallergenic. In laundry detergents it is used as a soil suspension polymer designed to deposit onto cotton and other cellulosic fabrics creating a negatively charged barrier to soils in the wash solution. CMC is used as a lubricant in non-volitile eye-drops (artificial tears). Sometimes it is methyl cellulose (MC) which is used, but its non-polar methyl groups (-CH3) do not add any solubility or chemical reactivity to the base cellulose.

Following the initial reaction the resultant mixture produces approximately 60% CMC plus 40% salts (sodium chloride and sodium glycolate). This product is the so-called Technical CMC which is used in detergents. A further purification process is used to remove these salts to produce pure CMC which is used for food, pharmaceutical and dentifrice (toothpaste) applications. An intermediate “semi-purified” grade is also produced, typically used in paper applications.

CMC is also used in pharmaceuticals as a thickening agent. CMC is also used in the oil drilling industry as an ingredient of drilling mud, where it acts as a viscosity modifier and water retention agent. Poly-anionic cellulose or PAC is derived from CMC and is also used in oilfield practice.

-=-

Paraffin – medicinal liquid paraffin is used to aid bowel movement in persons suffering chronic constipation; it passes through the gastrointestinal tract without itself being taken into the body, but it limits the amount of water removed from the stool. In the food industry, where it may be called “wax”, it can be used as a lubricant in mechanical mixing, applied to baking tins to ensure that loaves are easily released when cooked and as a coating for fruit or other items requiring a “shiny” appearance for sale.

It is often used in infrared spectroscopy, as it has a relatively uncomplicated IR spectrum. When the sample to be tested is made into a mull (a very thick paste), liquid paraffin is added so it can be spread on the transparent (to infrared) mounting plates to be tested.

Mineral oil has also seen widespread use in biotechnology for preventing the evaporation of small volumes of liquid during heating. Polymerase chain-reaction samples may need to be overlaid with a layer of mineral oil to prevent evaporation during the high heat (95 °C) required to denature DNA.

Paraffin wax as a food grade substance is used in:

  • Shiny coating used in candy-making; although edible, it is non-digestible, passing right through the body without being broken down
  • Coating for many kinds of hard cheese, like Edam cheese
  • Sealant for jars, cans, and bottles
  • Chewing gum additive

It is also used for:

  • Candle-making
  • Coatings for waxed paper or cloth
  • Investment casting
  • Anti-caking agent, moisture repellent, and dust-binding coatings for fertilizers
  • Agent for preparation of specimens for histology
  • Bullet lubricant – with other ingredients, such as olive oil and beeswax
  • Crayons
  • Solid propellant for hybrid rocket motors
  • Component of surf-wax, used for grip on surfboards in surfing
  • Component of glide wax, used on skies and snowboards
  • Friction-reducer, for use on handrails and cement ledges, commonly used in skateboarding
  • Ink. Used as the basis for solid ink different color blocks of wax for thermal printers. The wax is melted and then sprayed on the paper producing images with a shiny surface
  • Microwax: food additive, a glazing agent with E number E905
  • Forensics aid: the nitrate test uses paraffin wax to detect nitrates and nitrites on the hand of a shooting suspect
  • Antiozonant agents: blends of paraffin and micro waxes are used in rubber compounds to prevent cracking of the rubber; the antiozonant waxes can be produced from synthetic waxes, FT wax, and Fischer Tropsch wax
  • Mechanical thermostats and actuators, as an expansion medium for activating such devices
  • “Potting” guitar pickups, which reduces microphonic feedback caused from the subtle movements of the pole pieces
  • “Potting” of local oscillator coils to prevent microphonic frequency modulation in low end FM radios.
  • Wax baths for beauty and therapy purposes
  • Thickening agent in many Paintballs, as used by Crayola
  • An effective, although comedogenic, moisturizer in toiletries and cosmetics such as Vaseline
  • Prevents oxidation on the surface of polished steel and iron

(Source: http://en.wikipedia.org/wiki/Paraffin)

-=-

N(6)-Carboxymethyllysine (CML), also known as N(epsilon)-(carboxymethyl)lysine, is an advanced glycation endproduct (AGE). CML has been the most used marker for AGEs in food analysis.

An advanced glycation end-product (AGE) is the result of a chain of chemical reactions after an initial glycation reaction. Side products generated in intermediate steps may be oxidizing agents (such as hydrogen peroxide), or not (such as beta amyloid proteins). “Glycosylation” is sometimes used for “glycation” in the literature, usually as ‘non-enzymatic glycosylation.’

AGEs may be formed external to the body (exogenously) by heating (e.g., cooking);or inside the body (endogenously) through normal metabolism and aging. Under certain pathologic conditions (e.g., oxidative stress due to hyperglycemia in patients with diabetes), AGE formation can be increased beyond normal levels. AGEs are now known to play a role as proinflammatory mediators in gestational diabetes as well.

The formation and accumulation of advanced glycation endproducts (AGEs) has been implicated in the progression of age-related diseases. AGEs have been implicated in Alzheimer’s Disease,cardiovascular disease,and stroke.The mechanism by which AGEs induce damage is through a process called cross-linking that causes intracellular damage and apoptosis.They form photosensitizers in the crystalline lens, which has implications for cataract development.Reduced muscle function is also associated with AGEs.

AGEs may be less, or more, reactive than the initial sugars they were formed from. They are absorbed by the body during digestion with about 30% efficiency. Many cells in the body (for example, endothelial cells, smooth muscle, and cells of the immune system)from tissue such as lung, liver, kidney, and peripheral blood bear the Receptor for Advanced Glycation End-products (RAGE) that, when binding AGEs, contributes to age- and diabetes-related chronic inflammatory diseases such atherosclerosis, asthma, arthritis, myocardial infarction, nephropathy, retinopathy, periodontis, and neuropathy.. There may be some chemicals, such as aminoguanidine, that limit the formation of AGEs by reacting with 3-deoxyglucosone.

The total state of oxidative and peroxidative stress on the healthy body, and the accumulation of AGE-related damage is proportional to the dietary intake of exogenous (preformed) AGEs, the consumption of sugars with a propensity towards glycation such as fructose and galactose. (So naturally, this AGE is used to coat fructose engorged fruit!!! Real safe…)

AGEs affect nearly every type of cell and molecule in the body, and are thought to be one factor in aging and some age-related chronic diseases.They are also believed to play a causative role in the vascular complications of diabetes mellitus.

They have a range of pathological effects, including increasing vascular permeability, inhibition of vascular dilation by interfering with nitric oxide, oxidising LDL, binding cells including macrophage, endothelial, and mesangial cells to induce the secretion of a variety of cytokines and enhancing oxidative stress.

-=-

Gelatin (or gelatine) is a translucent, colorless, brittle (when dry), flavorless solid substance, derived from the collagen inside animals’ skin and bones. It is commonly used as a gelling agent in food, pharmaceuticals, photography, and cosmetic manufacturing. Substances containing gelatin or functioning in a similar way are called gelatinous. Gelatin is an irreversibly hydrolyzed form of collagen, and is classified as a foodstuff and therefore carries no E Number. It is found in some gummy candies as well as other products such as marshmallows, gelatin dessert, and some low-fat yogurt. Household gelatin comes in the form of sheets, granules, or powder. Instant types can be added to the food as they are; others need to be soaked in water beforehand.

Gelatin is a mixture of peptides and proteins produced by partial hydrolysis of collagen extracted from the boiled crushed bones, connective tissues, organs and some intestines of animals such as domesticated cattle, chicken, and pigs. The natural molecular bonds between individual collagen strands are broken down into a form that rearranges more easily. Gelatin melts to a liquid when heated and solidifies when cooled again. Together with water, it forms a semi-solid colloid gel.

The worldwide production amount of gelatin is about 300,000 tons per year (roughly 600 million lb).On a commercial scale, gelatin is made from by-products of the meat and leather industry.Gelatin is derived mainly from pork skins, pork and cattle bones, or split cattle hides; contrary to popular belief, horns and hooves are not used.The raw materials are prepared by different curing, acid, and alkali processes which are employed to extract the dried collagen hydrolysate. These processesmay take up to several weeks, and differences in such processes have great effects on the properties of the final gelatin products.

(Source: http://en.wikipedia.org/wiki/Gelatin)

Authors note… And so the practical joke of the century from the villainous FDA? Vegetarians and vegans have all this time been eating organic fruit and veggies covered in pig, beef, and chicken byproducts. Oh, they must get a kick out of themselves!

-=-

Could this food safety practice actually be causing harm and promoting disease and harmful pathogens?

Oh, most certainly, according to the FDA report.

In fact, it after reading this report, I am very suspicious that the recent outbreaks of food-borne illness caused from produce may X have ironically been caused by this scientific process of food safety.

Remember the great spinach scare of the 2006, when almost all prepackaged washed and ready to eat spinich was recalled due to the strain of E. coli called 0157:H7? Several of those infected during that outbreak were diagnosed with hemolytic uremic syndrome, a serious form of kidney failure (remember, the kidneys are your renal system, a side effect of which is mentioned above).

How about the recent February 2011 recall of broccoli, where a number of broccoli products sold under the Signature Café, TFarms and Raley’s labels were recalled due to the risk of Listeria food poisoning?

It seems most if not all of these recalls have to do with “fresh cut” or “washed and ready to eat” produce, as well as whole produce.

So let’s take a look at the report to see what this Map film can do for our little pathogenic food poisoning friends…

3.2. Pathogenic organisms

…MAP produce is vulnerable from a safety standpoint because modified atmospheres may inhibit organisms that usually warn consumers of spoilage, while the growth of pathogens may be encouraged. Also, slow growing pathogens may further increase in numbers due to the extension of shelf life. Currently, there is concern with the psychrotrophic foodborne pathogens such as L. monocytogenes, Yersinia entercolitica and Aeromonas hydrophila, as well as non-proteolytic C. botulinum, although clearly a number of other microorganisms, especially Salmonella spp., E. coli O157:H7 and Shigella spp., can be potential health risks.

3.3. Clostridium botulinum (botulism)

…there is some concern about the use of MAP with respect to this organism (Zagory 1995). Depending on the product in a MA package, the level of O2 can decrease rapidly if the product is temperature abused and product respiration increases, leaving a highly anaerobic environment ideal for the growth and toxin production of C. botulinum (Francis and others 1999)…

…in 1987, four circus performers in Sarasota, FL became ill with symptoms of botulism after consuming coleslaw prepared from packaged shredded cabbage purchased three weeks earlier in New Orleans (Solomon and others 1990). Researchers suspected that the cabbage had been packaged using MAP and that contaminated cabbage further contaminated the dressing, leading to the recovery of C. botulinum type A toxin and spores from the dressing.

…Lilly and others (1996) found that only 0.3% (1 of 337) of sampled shredded cabbage obtained from retail suppliers in the United States contained C. botulinum. However, the products tested had all been stored at 4°C (39.2°F), below the minimum for growth of proteolytic C. botulinum

Growth and toxin production of C. botulinum before obvious product spoilage has also been observed on Agaricus bisporus mushrooms (Sugiyama and Yang 1975) and potato slices (Dignan 1985). As well, Austin and others (1998) performed challenge studies using both nonproteolytic and proteolytic strains of C. botulinum on MAP fresh-cut vegetables and found that samples of butternut squash (5°C [41°F], 21 d) and onion (25°C [77°F], 6 d) appeared organoleptically acceptable when toxin was detected. It was also demonstrated that toxin production by C. botulinum varied with the vegetables tested. Only nonproteolytic strains growing on butternut squash were capable of producing neurotoxin at temperatures as low as 5°C (41°F ) in 21 d, whereas proteolytic strains were able to produce toxin on all vegetables tested (onion, butternut squash, rutabaga, romaine lettuce, stir-fry and mixed salad), except coleslaw at 15°C (59°F) and higher (Austin and others 1998)…

Fresh mushrooms and tomatoes have also been shown to contain spores of Clostridium spp., and therefore the possibility of botulism associated with these MAP products must not be ignored (Zagory 1995).

3.4. Listeria monocytogenes

Recently, concerns about possible pathogen contamination in MAP produce have focused on L. monocytogenes due to its ability to grow at refrigeration temperatures (NACMCF 1999). Numerous researchers have reported that this organism can remain largely unaffected by MAP, while the normal microflora is inhibited (Amatanidou and others 1999; Francis and O’Bierne 1997, 1998). Thus, although MAP produce can remain organoleptically acceptable, L. monocytogenes, with a reduced microflora and, especially if low levels of lactic acid bacteria are present, can grow at low temperatures to potentially harmful levels during the extended storage life of a MAP produce product

Early studies showed that L. monocytogenes inoculated onto broccoli, asparagus and cauliflower was unaffected by a modified atmosphere of 3% CO2, 18% O2 and 79% N2 for 10 d at 10°C (Berrang and others 1989a). Further studies by Beuchat and Brackett (1990a) clearly demonstrated that L. monocytogenes increased significantly in number on lettuce stored in a modified atmosphere of 3% O2 and 97% N2

…Francis and O’Beirne (1997) also reported that the growth of L. monocytogenes was stimulated by nitrogen flushing at 8°C (46.4°F). In addition, increasing CO2 levels from 10 to 20% has been reported to stimulate the growth of L. monocytogenes in a surface model system (Amanatidou and others 1999).

Challenge studies conducted by Farber and others (1998) focused on commercially available packaged vegetables and salads, as well as vegetables processed to mimic foodservice conditions. The importance of refrigeration was clearly demonstrated as L. monocytogenes population levels remained constant on all fresh-cut, processed and packaged vegetables stored at 4°C (39.2°F), with the exception of butternut squash and carrots on which the levels increased and decreased, respectively. At 10°C (50°F), the growth of L. monocytogenes was supported on all vegetables tested with the exception of chopped carrots, where the population decreased by 2 log units over 9 d. The inhibitory properties of raw, uncooked carrots and carrot juice on the growth of L. monocytogenes have been previously reported (Beuchat and Brackett 1990b). As well, Jacxsens and others (1999) reported a decline in L. monocytogenes on both Brussels sprouts and carrots packaged under a modified atmosphere (2 to 3% O2, 2 to 3% CO2, and 94 to 96% N2) and stored at 7°C (44.6°F)…

…and the authors concluded that these conditions might allow L. monocytogenes to reach potentially hazardous levels during the shelf life of the product…

The effects of competition between the indigenous microflora and pathogens on MAP produce have not been studied extensively. However, in a recent study, Francis and O’Beirne (1998) used a surface model agar system to examine the effects of storage atmosphere on L. monocytogenes and the competing microflora (Pseudomonas fluorescens, P. aeruginosa, Enterobacter cloacae, Enterobacter agglomerans and Leuconostoc citreum). The findings suggested that MAP conditions (5-20% CO2, balance N2 and 3% O2) might increase the growth rate of L. monocytogenes

…Liao and Sapers (1999) also reported that P. fluorescens strains inhibited the growth of L. monocytogenes on endive leaves and spinach, possibly due to the production of a fluorescent siderophore by the pseudomonads. In general, at 3% O2, a level often reached in commercial MAP packages, it appeared that growth of the inoculated mixed natural population was decreased, whereas L. monocytogenesproliferated.

Reports of L. monocytogenes growing on sliced apples in controlled atmosphere (Conway and others 1998) and peeled potatoes in vacuum-packages (Juneja and others 1998) at abusive temperatures provide further evidence that this organism may pose a safety risk with respect to certain MAP fruit and vegetable products, and reiterates the importance of Good Agriculture Practices (GAP), Good Manufacturing Practices (GMP) and HACCP for produce post-harvest handling and processing.

More research needs to be done to examine the influence of different atmospheres, background microflora and storage temperatures on the survival and growth of L. monocytogenes on MAP fresh-cut produce.

3.5. Aeromonas hydrophila

Aeromonas spp. can be found on a wide variety of foods, as well as in most aquatic environments and most often causes gastroenteritis, and occasionally septicemia (Kirov 1997)… A. hydrophila can grow at refrigeration temperatures, and several studies have shown that growth is not affected by low O2 levels (1.5%) and CO2 levels up to 50% (Francis and others 1999). A survey of 97 prepared salads found A. hydrophila to be present in 21.6% of them, significantly lower than in meat products tested (Fricker and Tompsett 1989). Hudson and De Lacy (1991) also did a small survey of 30 salads and found A. hydrophila in only one salad package not containing mayonnaise. They surmised that the mayonnaise lowered the pH of the food, thereby inhibiting the growth of or inactivating the aeromonads present…

Berrang and others (1989b) determined that although at both 4°C (39.2°F) and 15°C (59°F), the shelf life of broccoli, asparagus and cauliflower was prolonged by MAP (that is, 11-18% O2, 3-10% CO2, 97% N2), it did not negatively affect the growth of resident or inoculated A. hydrophila. Interestingly, the organism was detected on most lots obtained from the commercial producer. Therefore, for storage periods of 8-21 d, depending on the product, A. hydrophila increased from roughly 104 to 108 or 109 CFU/g, and product that appeared suitable for consumption was heavily contaminated with the pathogen. As with L. monocytogenes, the CO2 levels that were inhibitory to A. hydrophila (that is, >50%) also damaged the product (Bennik and others 1995)…

3.6. Other pathogens of concern with respect to MAP produce

Organisms such as Salmonella, Shigella, E. coli, and various enteric viruses, such as hepatitis A, have been implicated in produce outbreaks, and, therefore, there is concern about their behavior under modified atmosphere conditions (Zagory 1995; Amanatidou and others 1999). A 1986 outbreak of shigellosis was traced back to commercially distributed MAP shredded lettuce; 347 people were affected in two west Texas counties (Davis and others 1988). Fernandez-Escartin and others (1989) tested the ability of three strains of Shigella to grow on the surface of fresh-cut papaya, jicama, and watermelon and reported that populations increased significantly when the inoculated product was left at room temperature for 4-6 h. Shigella is not part of the normal flora associated with produce, but can be passed on as contaminants by infected food handlers and contaminated manure and irrigation water.

More recently, an outbreak of Salmonella Newport was reported in the U.K., associated with the consumption of ready-to-eat salad vegetables (PHLS 2001). To date, nine human cases have been identified with the isolated strain from the implicated salad vegetables having an identical PFGE pattern to three of the human isolates.

Salmonella Typhimurium and L. monocytogenes actually had an increased growth rate at these concentrations; growth increased from 0.011 and 0.031µ/h to 0.023 and 0.041 µ/h for S. Typhimurium and L. monocytogenes, respectively. In general, E. coli O157:H7, S. Hadar and S. Typhimurium were only inhibited by CO2 levels that caused damage and spoilage to the produce (Piagentini and others 1997; Amanatidou and others 1999; Francis and others 1999). A modified atmosphere of 3% O2 and 97% N2 also had no significant effect on E. coli O157:H7 inoculated onto shredded lettuce, sliced cucumber, and shredded carrot and incubated at 12 and 21°C (21.6 and 69.8°F) (Abdul-Raouf and others 1993). At 5°C (41°F), populations of viable E. coli O157:H7 declined on stored vegetables; however, at 12 and 21°C (53.6 and 69.8°F), populations increased, demonstrating the importance of refrigeration temperatures in maintaining product safety. Richert and others (2000) who, although not studying MAP, reported that E. coli O157:H7 could survive on produce (broccoli, cucumbers and green peppers) stored at 4°C (39.2°F) and proliferate rapidly when stored at 15°C (59°F). In 1993, there were two foodborne outbreaks of enterotoxigenic E. coli (ETEC) linked to carrots in a tabouleh salad served in New Hampshire and to an airline salad on a flight from North Carolina to Rhode Island (CDC 1994). Although these carrots were of U.S. origin, ETEC is a common cause of diarrheal illness in Mexico and developing countries that import fresh product to North America. Research on the behavior of this pathogen on fresh and fresh-cut product, both under MAP and without MAP, seems warranted…

…A more recent study, investigating the survival of C. jejuni on MAP fresh-cut cilantro and lettuce, found that refrigeration temperatures in combination with a modified atmosphere of 2% O2, 18% CO2 and 80% N2 can be favorable for bacteria (Tran and others 2000). Due to the microaerophilic nature of Campylobacter spp., which require 5% O2, 10% CO2 and 85% N2 for optimal growth, the investigators suspected that a low O2 modified atmosphere may provide an environment conducive to survival of the pathogen…

-=-

Table VI-2: Polymers, film types and permeability available for packaging of MAP produce:

Edible Films O2 permeability (mL.mm/m2.d.atm) CO2 permeability (mL.mm/m2.d.atm) Relative Humidity
Pectin 57.5 87
Chitosan 91.4 1553 93
Wheat (gluten) 190/250 4750/7100 91/94.5
Na caseinate 77 462 77
Gluten-DATEM 153 1705 94.5
Gluten-beeswax 133 1282 91
Na casenate/Myvacet 83 154 48
MC/MPMC/fatty acids 46.6 180 52
MC and beeswax 4 27 42
Gluten-DATEM and beeswax <3 15 56
Gluten-Beeswax and beeswax <3 13 56
Methylcellulose-palmitic acid 78.8 100
Zein 0.362 2.672 0.1163
Cozeen 0.892 5.252 0.4073
Polyethylene 8.32 26.12
Polypropylene 0.552 0.000653
Sucrose polyester 2.102 0.000423
Smart Films

  • O2scavengers with O2indicators
  • antibody based detection systems for detection of microbial pathogen
Antimicrobial filmsi) Edible

  • Chlorinated phenoxy compound with biocide incorporated into the polymer layer (that is, nisin, lysozyme)
  • Chlorine dioxide with biocide incorporated into polymer layer
  • Edible films with sorbic acid, sodium benzoate, benzoic acid and potassium sorbate
  • Pine based volatiles added to edible film
  • Horseradish extract added to edible film

ii) Non-edible films/products

  • Propyl paraben dispersed in a polymer emulsion (Permax 801 or Carboset)
  • LDPE with Imazalil
  • LDPE with grapefruit seed extract
  • Gas, as produced by sachets or other materials to produce sodium metabisulfite to obtain the production of sulfite

This list of ingredients includes substances that many people have high allergic reactions to, including wheat (gluten) and milk (caseinate), and ones that are just downright bad for your health, including Chlorine, corn byproducts, and other animal fatty acid byproducts.

-=-

So now at least you know. That shiny, healthy looking high-pro glow that is emanating from your fresh store-bought produce is more than likely this MAP – a film consisting of any number of inorganic, unhealthy compounds, including pork rinds and chicken bones!

The most important factor here is to understand that in an attempt prolong shelf life and reduce natural spoilage of our produce, these film covers are also creating an environment for bad pathogens to grow. And since the produce shows no signs of spoilage or contamination, the consumer may never know what is actually thriving thanks to that prolonged life allowed by modern, yet impossibly dangerous and deceiving food science.

And so once again, this is your Federal Food and Drug Administration at work.

When will we learn that the FDA is in the business of making its government owned corporations lives easier, by deregulating the rules that govern the food and drug industries and by allowing just about anything to be called “edible” and “food”, while simultaneously destroying the lives of anyone who tries to heal or cure disease without the FDA’s permission… and stealing their patents to boot? And now arresting farmers who transport raw milk across state borders as if milk is a illicit drug?

What is it going to take to make you stand up to this beast… this tyrant?

Less fluoride, perhaps…

 

–Clint Richardson (realitybloger.wordpress.com)
–Sunday, January 8, 2012

Weight Loss

Should you be avoiding this food for maximum Weight Loss?

 

Should you be avoiding this food for maximum Weight Loss?

In my over 10 years of experience in the health and fitness industry, I’ve seen many trends come and go…Grapefruit diets, liquid diets, low carb diets, cauliflower diets (ok, I made that up), but there is always “a new popular kid in town” and weight loss ideas that are the “cool in thing” to do.

It seems like these days everyone is going Gluten Free and avoiding gluten like the plague, but is this strategy really the best way to lose weight? Let’s dive into the topic a little deeper.

What exactly is Gluten?

First I will tell you what gluten is NOT. Gluten is not a grain, but is a component of grains and cereals. Gluten is actually a protein and is most commonly found in wheat, rye and barley. Since most breads, cereals, crackers, pasta and many packaged snacks all contain either wheat, rye or barley, these foods are all gluten-containing foods.

There are many grains that do not contain gluten such as wild rice, corn, buckwheat, millet, amaranth, quinoa, and some oats. So people who are avoiding gluten will still eat and enjoy these foods or any food made from them.

What’s the big deal about gluten anyway?

Going “gluten free” has become all the rage in the weight loss and health industry. Just as going low fat or low carb had its time in the limelight, it seems like the new fad and trend is to go gluten free (c’mon, all the cool kids are doing it). There is a small percentage of people (less than 1% in the United States) that DO need to avoid gluten at all costs because they suffer from an autoimmune disorder of the small intestine called Celiac Disease. This is a very serious disease that needs to be diagnosed and treated by the right medical professionals and should not be taken lightly.

A greater percentage of people are not walking around with Celiac Disease (trust me, you would know if you had it), but have a moderate to severe intolerance to gluten where their digestive system simply cannot process this particular protein causing them symptoms like gas, bloating, and digestive difficulty. Another problematic side effect of gluten intolerance is the inability to lose unwanted fat off your body, making it extremely difficult to even lose a few stubborn pounds.

With that being said, I’m going to tell you something extremely important about gluten. READY? You Do NOT have to give up gluten in order to lose weight and be healthy. With gluten free being the latest cool topic on the weight loss circuit, everyone seems to believe that going completely gluten free is the only way to lose weight. Now, I’m not saying there isn’t value in giving it a try and many people have experienced drastic changes in their health and weight when going gluten free, but I want you to take your health journey at your own comfortable pace and follow a plan that is livable and doable for you.

The benefits of going Gluten Free.

The biggest benefit for those who even suspect they may be even slightly gluten intolerant is a relief of their digestive symptoms and weight loss. Yes, people who have struggled for some time even just trying to lose a few pounds have seen a dramatic change in their health and weight loss efforts when taking some time away from gluten and gluten containing products.

Here is a simple step by step process if you think gluten just may be the culprit in your struggle to lose those unwanted pounds.

1. Go back to the “Grains” chapter of your manual and review the symptoms of a potential gluten intolerance. As mentioned above, some are gas, bloating, abdominal pain, and fatigue ( a more extensive list can be found in that Grains chapter).

2. If you are experiencing any of the symptoms mentioned above on a regular basis (3-4 times per week), it would be well worth a try to go gluten free for a minimum of 2 weeks. This means avoiding foods like most breads, cereals, crackers, pasta and processed snacks. Your manual has details on exactly which foods to stay away from and how to still eat delicious meals while staying gluten free.

3. Get creative and try new recipes focusing on proteins, vegetables, fruits and grains like rice, quinoa and millet. My family absolutely loves beef and vegetable stir fry over rice, grilled fish over quinoa salad and millet hot cereal for breakfast with chopped nuts and fruit. The choices are endless and your meals do not have to include bread or pasta to be super delicious.

A special NOTE and something extremely important to remember. Be careful and weary of most “Gluten Free” products! I actually think most of these products do more harm than good and can stall and/or prevent weight loss. Here are the ingredients listed on the back of “gluten free” crackers that are promoted as healthy and ideal for a gluten free diet:

potato starch, rice flour, buckwheat flour, eggs, palm oil, modified corn starch, dextrose, salt, yeast, hydroxypropyl methycellulose, sunflower lecithin, cream of tartar, ammonium bicarbonate, natural flavor.
Does that sound heavily processed or what????

Here are the ingredients of a breakfast cereal advertised for children as healthy and part of a nutritious gluten free diet:

organic corn meal, organic whole grain corn meal,?organic evaporated cane juice, organic peanut butter, organic molasses, organic cocoa, sea salt, organic soy oil, natural flavor, tocopherols (natural vitamin E).
I don’t know about you, but that’s definitely not something I am going to give my son, especially with the soy oil in it!

Remember, you don’t have to go gluten free to lose those stubborn pounds, but it just may be the key to weight loss if you’ve been at a standstill for some time. Again, it would be helpful to refer to the “Grains” chapter of your manual and review some of the potential symptoms and meal plans that are ideal for avoiding gluten in the easiest way possible.

I’ll be back in a few days with some of my favorite gluten free recipes.

Do you like this article?
Share it with your friends!

This article is from BeyondDiet.com
More from Isabelle  De Los Rios
As promised, I’ve got 2 wonderful gluten free recipes for you today that happen to be at the top of my “favorite” list. They are both breakfast options (but then again, you can have breakfast any time of the day right?) since many of my readers have told me that breakfast is the meal they have the hardest time keeping new, fun and delicious.Both recipes were given to me by a fellow reader and follower of the plan, Halle Cottis. Halle is, by far, one of the best cooks I know that has been able to master the art of cooking delicious and fun meals that are 100% approved on our healthy and fat burning meal plans. Not just that, but almost all of her recipes are super easy and don’t require a long list of fancy ingredients.

I know you’ll agree that her recipes are just great after you try these 2 delicious breakfast meals:

Blueberry Pancakes
By: Halle Cottis

Ingredients:
1/2 cup rolled oats (gluten free oats)
1/2 cup cottage cheese
2 large eggs
1/2 tsp stevia blend, honey, or maple syrup
1/4 tsp vanilla
1/4 tsp cinnamon
1/4 cup blueberries
1/2 tsp baking powder
coconut oil to grease pan

Instructions: Put rolled oats in food processor and blend oatmeal to a fine powder. Add remaining ingredients, except blueberries, into food processor and blend until batter forms (about 10 seconds). Heat skillet to 300 degrees and grease generously with coconut oil to prevent sticking. Pour batter into a hot skillet, making 4 pancakes and add your blueberries. Cook until lightly brown and then flip over and cook the other side until lightly brown. Use maple syrup for your pancakes.

Serving Size: 2 pancakes

Yields: 4 pancakes

Breakfast Crepes
By: Halle Cottis

Ingredients:
1/2 cup coconut milk
3/4 cup water
2 large eggs
2 tbsp melted butter
1 cup brown rice flour
1/2 tsp salt
1 tsp steviva blend
1/2 tsp vanilla
1/4 tsp baking powder
coconut oil to grease pan

Instructions: Combine the wet ingredients in one bowl and mix with a whisk until well blended. In another bowl combine the dry ingredients, mix well. Combine the dry and wet ingredients to form a thin batter.

Heat a 8″ skillet on medium high heat and add a small amount of coconut oil to the pan. Pour about 1/4 cup of batter into a hot skillet. Swirl the skillet until the bottom of the pan is covered with batter. Cook the crepe for 1 minute. Use a thin spatula to loosen the edges and gently flip it over and cook for an additional minute. Transfer to plate and fill with favorite topping. I like cottage cheese with blueberries, or you can do a fresh fruit crepe.

Variations: There are many fillings that can be used in crepes. Baked apples and cinnamon, cottage cheese with blueberries, strawberries and yogurt, the possibilities are endless.

Serving Size: 1 crepe

Yields: 8 crepes

I know you’ll enjoy these recipes as much as I do. They make a wonderful, super healthy breakfast option for the whole family.

Please check out BeyondDiet.com for more from Isabelle she is truely an inspiration.